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ABSTRACT

In the theory of an electrostatic plasma probe, the current

is calculated by considering all possible trajectories corresponding

to particles which impinge on the probe surface. The trajectories

may or may not be populated, depending on the geometry of the probe

and the structure of the potential distribution in its vicinity, as

well as on the particle velocity distribution at infinity. By con-

sidering which trajectories are populated and which are not, a theo-

retical expression is obtained for the current collected by a planar

probe assumed to be embedded in the skin of a large satellite in

the ionosphere plasma. This expression is in the form of an integral

over velocity space. The analytical properties of the domain in

velocity space which corresponds to populated trajectories are in-

vestigated. The shape of the domain governs the current character-

istics of the probe. General formulae are derived which depend on

the shape of the domain. An approximate theory is employed to obtain

an analytical form for the shape of the domain, and expressions are

derived for the current characteristics of the probe. Comparison is

made between the theoretically derived characteristics and those

computed by numerical trajectory calculations. An approximate

theory is also employed for the spherical probe, based on a power-

law potential model. The planar and spherical probes are compared.

The circumstances under which Druyvesteyn relations exist are investi-

gated for the planar and spherical probes. Under the assumption of a

spherically syn_netric potential, formulae are derived for the current

collected by a spherical probe moving through a plasma. The theore-

tical current collection based on the power-law potential model is

compared with the current based on the sheath model.
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THEORY OF A STATIONARY PLANAR PROBE

I. INTRODUCTION

Measurements of the density and temperature of charged particles

in the ionosphere have recently been made using a circular planar probe,

flush-mounted in the skin of the carrier satellite. I The probe essen-

tially consists of a grid maintained at an arbitrary potential with

respect to the satellite. There may also be inner grids or collecting

electrodes. The current entering the outer grid or aperture of the

probe, plotted as a function of the grid potential, is called the current

characteristic. It is possible, by suitable interpretation of the plot,

to infer certain parameters (moments) associated with the charged particle

velocity distributions in the undisturbed plasma "at infinity." The task

of interpretation involves separating out the specific geometric-electrlc

effects of the probe which perturbs the plasma.

In the case of a retarding probe, whose outer grid is biased so

as to repel the particles of a given sign, the current characteristic

is frequently free of geometric effects, so that it may be interpreted

rather directly in terms of the velocity distribution st infinity. For

example, under certain circumstances, it is possible to obtain the velocity

distribution directly from the second derivative of the current character-

istic with respect to the retarding potential. This technique is usually

2
associated with the name of Druyvesteyn , who applied it to his measure-

ments, although this relationship had been recognized earlier by Mott-

Smith and Langmulr 3 (Reference 3, p. 753). Because of its specific

association, the relation between the second derivative of the current

and the velocity distribution function will be referred to here as a

"Druyvesteyn relation."

In the case of an accelerating probe, the outer grid is biased

so as to attract the particles of a glven sign. The current character-

istic will be referred to as the "probe current characteristic." This

characteristic usually cannot be interpreted so directly as the retarding

probe characteristic because the effects of geometry and of the velocity
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distribution are strongly coupled in the resulting current. However,

an important modification may be made in which the potential of the

outer grid is held fixed while a variable bias is applied to an inner

collecting electrode (see Fig. I) so as to repel particles which have

passed through the outer grid. The curve obtained when the current

entering the collecting electrode is plotted as a function of the

retarding potential on the collector will be referred to as the

"retarded current characteristic" (not to be confused with the char-

acteristic of a retarding probe). A Druyvesteyn relation may exist for

this characteristic under certain circumstances, which are discussed in

this paper.

When the ambient plasma is collision-free, the details of the

particle trajectories will determine the effects of geometry on the

current-collecting characteristics of the accelerating probe. In par-

ticu_ar, a significant role will be played by trajectories which inter-

sect the surface of the satellite. This paper will be primarily

concerned with the effects of trajectory intersections. The term

"intersection" will be taken here to refer to a particle trajectory

which intersects the surface of the satellite, not only at the probe

surface (grid) but also at some other point on the satellite. This

can occur whether or not the trajectory can connect with infinity

according to energy conservation. Since the trajectories are dynamically

reversible for the time-independent problem, a trajectory can be analyzed

by following it backwards in time to its origin. Starting from the probe

surface, a particle which has the energy to escape to infinity may in-

stead strike the satellite surface, i.e., its trajectory may intersect

the satellite surface. If there is no reflection or photoelectric

emission, the trajectory is not occupied. Therefore, it contributes

nothing to the current and will said to be "excluded." If the particle

has the energy to escape to infinity and does not strike the satellite,

however, its trajectory is an occupied one and does contribute to the

current. Whether an intersection does or does not occur will depend

2



on the angle _ made by the initial velocity vector (at the probe

surface) with the outward normal to the probe surface. Assuming the

particle has the energy to escape to infinity, it will (generally) do

so when _ = 0, i.e., when the initial velocity is vertical. When

= _fF/2, the trajectory is a grazing one and the particle certainly

intersects the surface. There is, therefore, a critical value of the

angle, for greater values of which the trajectories are excluded or

unoccupied because of intersections. The exclusion of trajectories at

angles e less than -_-/2 results in a modification of the current

characteristics similar to the effect of the finite sheath in the

theory of Mort-Smith and Langmuir 3. (Formulae which correspond to

the infinite Sheath limit in the Mott-Smith-Langmuir theory will be

called "Langmuir formulae.") Moreover, a Druyvesteyn relation may

not exist when exclusion effects are important. Modifications of the

theory of spherical probes due to exclusion effects are discussed by

Hall 4, Bernstein and Rabinowitz 5 and Al'pert Gurevich and Pitaevskii 6 .

When the distribution of particle velocities at infinity is

not isotropic, e.g., a streaming Maxwellian, it is not possible to

express the current to a planar probe in a simple analytic form.

However, when the distribution of velocities is isotropic, the current

may be expressed in a form which exhibits clearly the effect of trajec-

tory exclusions. It is possible in only one case to express the probe

current analytically when the velocity distribution is arbitrary.

This is the case of a spherical probe in a spherically symmetric

potential. The current depends only on the distribution in speeds at

infinity. Because of its general interest a discussion of this case

is included here.

In the next section, assuming a simplified geometry, the theory
l

of the particle current density at the outer grid of an accelerating

planar probe is treated, assuming a Maxwellian distribution of particle

velocities at infinity, and absorption of particles at the surface.

Intersections are discussed in terms of a curve in "trajectory space,"



representing the demarcation betweenthe domainsof occupied andun-
occupied or excluded trajectories. Expressions are presented for the

probe current and the retarded current characteristics in terms of an

undetermined algebraic function representing the boundary of the ex-

cluded portion of trajectory space. The one-dlmensional and three-

dimensional limiting cases are discussed.

In Section III, current characteristics obtained by numerical

trajectory calculatlons 7 are presented for the unshielded electric

field of the OGO probe 8. A numerically-determined boundary curve in

trajectory space is discussed.

In Section IV, an approximate theory is employed to obtain an

analytic expression for the boundary curve in trajectory space. The

current characteristics based on this analytic expression are derived

and a comparison is made with the results of the trajectory computations

of Section III. The limiting cases are discussed.

Appendix A treats the effects of intersections on the current

to a sphere, assumlng a spherically symmetric potential described by

a power law. An approximate analytic expression is derived for the

boundary curve in trajectory space° The resulting current character-

istics are derived, with the exponent as a parameter, and compared

with the Langmuir formulae.

In Appendix B, the current characteristics are derived for a

general isotroplc distribution. A Druyvesteyn relation is shown to

exist, under reasonable assumptions, for the retarding probe charac-

teristic and for the retarded current characteristic of the accelerating

probe, regardless of intersections. The accelerating probe current

characteristic is shown to have the classical linear form in the absence

of intersection effects.

In Appendix C, the characteristics of accelerating probes are

derived for general isotropic distributions. The approximate one-

parameter theories of Appendix A and Section IV are applied to the
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cases of the spherical probe and the planar probe, respectively. In

the presence of intersection effects, the characteristics are linear

only for large values of probe potential, and have slopes less than

those of the classical Langmulr formulae. A relation similar to the

Druyvesteyn relation is foun4 for the sphere.

In Appendix D, the exceptional case of a spherical probe in a

spherically symmetric potential is discussed. The velocity distribu-

tion is assumed rotatlonally symmetric but otherwise arbitrary. The

current to the probe is obtained by integration over the probe surface,

taking into account the effects of trajectory intersections when the

potential is a prescribed power law. A Druyvesteyn relation is

shown to hold for an arbitrary speed distribution at infinity. The

expression obtained for the power-law model when the velocity distri-

bution is a Maxwelllan with drift is compared to that obtained on the

basis of a sheath model.



II. THE THEORY OF THE PROBE CHARACTERISTICS

The current of particles passing through unit ares at any point

r in ordinary space, i.e., the vector current density, may be repre-

sented as a triple integral over velocity space of the form

= C (1)

where v is the vector velocity of a particle passing through the

polnt-_. The function f_, _) is the density of points in six-

dimensional phase space. In the time-lndependent collislon-free case

the function f is given by the solution of the Boltzmann equation:

where a is the vector acceleration of the particle, and the gradient

operators Vr and _v represent differentiations with respect to the

components of _ and _, respectively. The function f will he referred

to as the "distribution function".

A planar probe embedded in the skin of a large satellite 8

(large compared with dimensions such as probe radius and Debye length)

may be approximately represented by the geometry shown in Fig. i, in

which the satellite skin is considered to extend to infinity in the form

of a flat plane. The satellite skin will be assumed to be at the potential

of the ambient plasma. Since the probe potentials of interest will be

considerably larger than the difference of potential between the

satellite and the plasma_ the results following from this assumption

should not be greatly in error. The normal component of current density

at a point_ on the outer grid of the probe shown in Fig. 1 is given
P

by the scalar triple integral over velocity space:

6



where v is the normal component of velocity of a particle passing
Z

through the point r .
P

When the forces have the property that the total energy is

constant along any particle trajectory, then the function f is

constant along that particle trajectory. Thus, if the distribution

function f is known on a given boundary C in phase space, then at

any point -_ along a trajectory which connects with C we have

where

47C 47Cr-_ qT- ) ----

_ _ = _ E (5)

A boundary of this type is illustrated in a two-dimensional repre-

sentation of phase space in Fig. 2. In Eqs. (4) and (5), m is the

particle mass, _ is the scalar potential energy function, E is the

(constant) total energy, and the subscript C refers to points on the

boundary C.

For the probe geometry depicted in Fig. i, the boundary C is

comprised of two parts, A and B, where A refers to the entire satellite

surface and B represents all other points at infinity above the plane.

On the two boundaries, A and B, the corresponding distribution functions

fA and fB will be assumed known. On the boundary at infinity (B) the

distribution function may be assumed, for many physical situations of

interest, to be given by the Maxwellian function

where fB is dimensionless and is defined in units of the ambient particle

density denoted by n . The dimensionless velocities-_ B and-_ are
O S
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aefined in units of the thermal velocity (2kT/m) ½, T being the tem-

perature. The velocity vector v s is defined here as the vector Mach

number and represents the dimensionless mean velocity of the gas of

particles with respect to the satellite.

If + denotes the dimensionless potential energy defined in

units of the thermal energy kT, then, according to Eqs. (4) and (5),

the distribution function at rp for trajectories which connect with

infinity (B) is given by

where

(7)

and _ is assumed to vanish at infinity.

On the satellite surface, boundary A, the distribution function

is that which describes the emission of particles from the surface, e.g.,

photoelectrons, secondary electrons, or reflected particles. If there

is no emission of any kind, the distribution function f vanishes at

the surface. It will be assumed in this paper that all charged particles

incident on the surface are neutralized and that none are emitted so that

fA is zero. Thus, f is zero for trajectories which intersect the

satellite surface. It will also be assumed that the probe potential

(4) is negative and that there are no particles occupying trapped

trajectories. The Mach vector v s will be assumed normal to the probe,

defining a z-axis whose positive direction is upward as in Fig. I. The

normal component of the current density (j) will be considered at the

center of the probe for simplicity, since the geometry of the integrals

is then rotationally symmetric. For off-center points, the integrals

are more complicated but the essential ideas would be the same.

8



A. THE ACCELERATING PROBE CURRENT CHARACTERISTIC

it will be convenient to employ cylindrical coordinates for

the velocity space, with the Vz-aXls of the system along the direction

of v s . Thus, v z and v r will represent the axial and radial components

of the dimensionless velocity, respectively. With the use of Eqs. (3),

(7), and (8), the current density at the center of the probe can be

written as the ratio

where Jo is the ambient thermal current density defined by

In Eq. (9), _ is the potential energy of a particle at the

probe surface, and Vz_ is the value of v z at infinity, which depends

on the local values of v z and v r through the trajectory. The lower

limit Vm(V z) of the Vr-integral is, in general, an unknown function of

v z representing the boundary of the domain, in Vr-V z space, in which

the integrand is non-vanlshing. This is the domain in which trajectories

are not only energetically possible but also connect with infinity, i.e.,

they do not intersect the surface of the satellite. An example of such

a boundary is shown in Fig. 3, where the shaded domain represents tra-

jectories which are unoccupied, either because they are not energetically

possible or because they intersect with the satellite surface. Thus, recall-

ing that the trajectories are to be followed backwards in time, we

see that the integration in Eq. (9) extends over the domain above and

to the right of some curve Vr = Vm(Vz) in Fig. 3. For negative values

of Vz, the trajectories are unoccupied since they clearly come from

the satellite surface, which has been assumed non-emittlng. For

9



positive values of Vz, it is not simple to distinguish between those

trajectories which are unoccupied because they are energetically

impossible and those which are unoccupied because they originate at

the satellite surface. Thus, for positive values of Vz, the curve

Vm(Vz) must in general be determined by detailed trajectory calcu-

lations in a given electric field. Also, for an arbitrary electric

field, the connection between v and v and v cannot be determined
z_ r z

analytically, and hence, the evaluation of the integrand in Eq. (9),

even for the allowed domain, must be performed numerically. However,

for the case of zero Mach number (v s = 0), it is possible to gain con-

siderable analytic insight, and it is with this case that we will

henceforth be concerned.

For v = 0, the integrand and differentials in Eq. (9) may be
s

expressed in terms of v 2 and v 2, and it is therefore convenient to
z r

represent the allowed domain of integration as in Fig. 4. If there

were no intersections, the allowed domain in Fig. 4 would be the

entire quadrant except for the triangular area representing points such

that v r2 + Vz2 _ Vo, where Vo denotes the positive value -_, i.e.,

the magnitude of the probe potential. The forbidden triangle represents

points which cannot connect energetically with infinity. (See also

Reference 3, pp. 755-6.) However, the effect of intersections is to

exclude also a neighborhood of the entire v 2 _ axis (near v - O) from
r z

the allowed domain. This is due to the fact that points on this axis

correspond to grazing trajectories, and that grazing particles will be

deflected into the probe surface by any attractive field, however weak.

This situation is peculiar to the planar probe, and does not apply to

the case of a sphere, in which case only a finite portion of the v 2 _
r

axis may be excluded. (See Appendix A for the special case of the

sphere.) 9 The closer a trajectory is to grazing incidence, i.e., the

2 axis its representative point lies, the larger iscloser to the v r -

the required value of v 2 to correspond to an allowed trajectory. Thus,
r

2 axis, i.e., curve (c) in Fig. 4, the boundary of
rather than the v r -

iO



the allowed domain may be some curve such as (a). This boundary may

2 + v 2 = V in Fig. 4, in which casepossibly intersect the line v r z o

the allowed domain would be above and to the right of both curves.

If intersections are not very important, the curve (a) moves to the

left, i.e., toward the axis (curve (c)). If intersections are very

important, the boundary curve may be like (b) in Fig. 4. As inter-

sections become dominant, the boundary curve may move to the right

and tend toward the vertical line (d). All boundary curves probably

pass through the point v 2 = V on the v 2 _ axis. That is, unless
Z O Z

the electric field is very peculiar, the trajectory should be capable

of connecting with infinity regardless of intersections provided only

2 exceeds V An important distinction exists between pointsthat v z o"

to the right of and points to the left of the vertical line (d), i.e.,

v 2 = V in Fig. 4. For points to the left of (d), an interchange
Z O

occurs between the kinetic energies associated with radial and axial

components of velocity. That is, some axial kinetic energy must be

transformed into radial kinetic energy as s particle comes in from

infinity and arrives at the attracting probe surface. For example,

a particle may arrive without any axial velocity, all of its kinetic

energy having gone into radial motion. However, for points to the

right of (d), an interchange may or may not occur between the kinetic

energies associated with radial and axial motions. These motions may

be considered as independent, as far as the current integral (see Eq. (Ii)

below) is concerned, and the consequence is that in certain cases con-

tributions to the right of (d) reflect directly the velocity distribution

at infinity, independently of the geometry of the probe. It is shown in

Appendix B that this property applies to an isotropic distribution at

infinity, which may otherwise be arbitrary.

In the following analysis it will be assumed that the intersection-

governed part of the boundary curve in the velocity space is represented

by a curve such as (a) in Fig. 4. This behavior is suggested by the

results of numerical calculations. (See Section 111.) 7

ii



If v s = 0, then Eq. (9) may be expressed in the form

oO

(II)

where Jo denotes the thermal ambient current density no(kT/2"Wm)½.

(See Eq. (i0)). In Eq. (Ii), z represents Vz2, x represents v r2 ,

V represents the positive value --_, i.e., the magnitude of the
o

attractive probe potential energy, and Xm(Z) represents the boundary

in x-z space between the occupied and unoccupied domains. The x-z

space will be referred to as the "trajectory space." (Confusion should

not result from the use of this notation, since no reference is made to

spatial coordinates.) The boundary curve is assumed to be glven for

the present case as in Fig. 5, where it consists of three regions:

(I) Xm(Z) = 0 ( z > V o) (12a)

(II) Xm(Z) = V° - z (zI __ z <_ Vo ) (12b)

(III) xm(z) > Vo - z (0 _ z _ zI) (12c)

In Region III, the form of Xm(Z) is due to intersections and is

not expressible analytically in general. Regions II and I represent the

purely energetic requirement on the trajectories, namely, the relation-

ship

x+ z - v° _o (13)

Then Xm(Z) is given by Vo - z or zero, whichever is greater.

12



On the basis of the assumed behavior of the boundary curve in

trajectory space as shown in Fig. 5, Eq. (Ii) yields the resulting

current density:

J

o = gl + g2 + g3

(14)

where

@a= £Vo e (17)

Now, in the case of no intersections, z I vanishes, and the current

density becomes

o = gl + g2 = i + V °

(18)

which is the classical Langmuir formula.3 However, when intersections

are present, z I does not vanish and the current is less than that given

by Eq. (18) since g3 is always less than z I. (See Section IV.)

13



It is of interest to compare the current density derived here

with the current density of attracted particles which would enter the

surface of a charged sphere at rest in a plasma. The current density

entering the sphere would be given by Eq. (18), provided that the

potential is spherically symmetric and falls off less rapidly than

the inverse square of the radial distance. If the potential is

spherically symmetric and falls off like the inverse n-th power of

the distance, where the exponent n exceeds 2, then, as is shown by

an approximate analytical calculation given in Appendix A, the current

density rises less rapidly with V ° than is indicated by Eq. (18). In

the limit of large values of the exponent n, the ratio J/Jo approaches

unity for all values of V . In this limit the one-dimensional case of
O

constant current is approached. Similar conclusions are arrived at in

Reference 6 (p. 230).

The two terms in the formula 1 + V of Eq. (18) represent
O

distinctly different types of trajectory contributions. Due to the

special mathematical form of the integral in this symmetric problem,

the term represented by unity may be considered as arising from the

contributions of trajectories in which only the z-component of velocity

is altered in coming from infinity to the probe. It reflects directly

the integral over the distribution of the speeds at infinity. This is

generally true for isotropic velocity distributions at infinity, as is

shown in Appendix B. Thus, it has essentially a one-dimenslonal char-

acter, and is probably independent of the effects of intersections,

i.e., of the geometry of the probe. However, the term represented by

V arises from trajectory contributions in which there has been an
O

interchange of energy between the radial and axial components of

velocity. It is associated with geometric "convergence" or confluence

of particle streams, and reflects the geometric influence of the probe.

This term is likely to be affected by intersections in that its magnitude

would be reduced. It tends to vanish in the limit in which intersections

are so dominant that the problem becomes essentially one-dimenslonal

(e.g., a very thin sheath).

14



B. THE RETARDED CURRENT CHARACTERISTIC

If a collecting electrode is placed close to and behind the

probe grid shown in Fig. i, and the collecting electrode is biased so

as to repel particles coming through the grid, a retarded current

characteristic may be obtained. Let the retarding potential energy

of the collecting electrode with respect to the outer grid be denoted

by V in units of kT, where V is positive. Then the current collected

is less than that entering the grid due to the fact that some of the

attracted particles incident at the grid cannot overcome the potential

barrier V. The problem is one-dimenslonal in that only the kinetic

energy associated with the z-component of velocity is affected. Hold-

ing the outer grid potential fixed at Vo, the current collected across

the potential barrier V is given by the following modification of Eq. (ii):

- R v° C _ - _nCa)

A consequence of the form of Eq. (19) is that the function Xm(Z) may be

inferred from an experimental measurement of J'/Jo as a function of V.

Taking the derivative of both sides with respect to V, we have

(v)-- Vo-V-,,,[ _v ,io
(20)

This formula will be referred to in the discussion of Section III.

Assuming Xm(Z) has the form given by Eqs. (12), Eq. (19) may be

expressed according to three possible cases:

(a) o_z--VZ---_ < V_

15



2=vo-v
4,

4-f
(22)

(c) V>V.

(23)

In Eq. (21), Xm(Z) is the unknown function determined, say, by

trajectory intersections. Thus, the characteristic is'linear in a

portion of the range of V below Vo, and exponential for V above Vo,

with continuity of value and slope at V = V . For small values of V,
O

the characteristic is truncated due to exclusion of trajectories by

intersections with the satellite surface. This behavior is illustrated

by curves in Fig 6, which are derived in Section IV on the basis of an

approximate theory of intersections. The form of Eq. (23) suggests that

a Druyvesteyn relation may hold for the retarded current characteristic

of the accelerating probe. This question is explored in Appendix B.

16



III. NUMERICAL CALCULATIONS

For the planar probe geometry 8 shown in Fig. i, detailed

numerical trajectory calculations have been performed 7 which yield

insight into the effect of trajectory intersections on the current

and on the shape of the allowed domain in velocity space. The prob-

lem may be approximated by one in which an infinite plane is maintained

at zero potential, except for a circular area representing the probe,

which is maintained at a different potential. The potential distribu-

tion in the absence of space charge (Laplace solution) is represented

by the contour plot in Fig. 7. The function depicted in Fig. 7 corre-

sponds to unit potential on the probe. The potential everywhere is

scaled by the factor V when the probe potential is V .
O O

The current ratio J/Jo was calculated as a function of V ° (see

Eqs. (I0) and (ii) for definitions). This characteristic is shown for

V in the range (0, 16) in Fig. 8 and in the range (0, I00) in Fig. 9.
O

The numerical points are designated by circles. For large values of

V the characteristic is a straight line to within the accuracy of the
O

calculation. The slope is less than unity, due to trajectory exclusions.

Also plotted in Fig. 8 and 9 are analytical curves derived in Section IV.

Further detailed numerlcal calculations were performed for a grid potential

of V = 45.54, corresponding to 5.1 volts for an ambient temperature of
O

1300°K. The derivative d(j/jo)/dz was computed as a function of z,

where z has been defined previously in Section II as the kinetic energy,

in units of kT, associated with the normal component of velocity at the

probe surface. This computed derivative is shown in Fig. I0. There is

a flat plateau just below z = 45.54, and a sharp transition at z = 45.54

to an exponential. The falling-off for z near zero is clearly a mani-

festation due to trajectory intersections. The boundary for the domain

of allowed trajectories in the trajectory space, i.e., the function"

Xm(Z) in Eq. (ii) or Eq. (19), may be obtained from the function in

Fig. i0 by the use of Eq. (20), in which V is replaced by z and -dj'/dV

is replaced by dj/dz. The resulting graph for Xm(Z) is shown in Fig. Ii.
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The computed domain in Fig. ii of allowed trajectories in

trajectory space suggests that Fig. 5 is a good representation. That

is, intersections affect the domain for z between 0 and 45.54, i.e.,

where geometrical effects are important. The current J/Jo' for

V = 45.54, is given by the area under the curve in Fig. i0. This iso

approximately 35, consistent with Fig. 9.

The retarded current characteristic may be obtained from the

numerical data by integrating the curve in Fig. I0 (d(j/jo)/dz) from

V to infinity, where V is the repulsive potential barrier which

particles must overcome in going from the outer grid to the collector.

The resulting characteristic corresponds nearly exactly to the

theoretical curve with b _ 1 in Fig. 6. A discrepancy occurs in the

vicinity of V = ii, where the numerical calculations (dotted line)

show a less abrupt transition from the flat portion to the linear

portion of the characteristic.
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IV. APPROXIMATE THEORY OF INTERSECTIONS

By the use of an impulse approximation, it is possible to

derive a theoretical expression for the boundary curve Xm(Z) of the

allowed domain in trajectory space (see Figs. 5 and ii). This may

then be used to obtain analytic expressions for the current character-

istics such as given by Figs. 6 and 8.

Let the velocities be taken in units of (2kT/m) ½ and the

energies in units of kT. Then the equation for the finite change in

the normal component of velocity (_ ) due to the normal component

of the potential energy gladient (_ /_z) may be written:

o6

As

nj-
(24)

Equation (24) equates the momentum change to the impulse of the

force, as one follows the particle backwards Irn time from the center of

the probe, where s = 0, to either infinity or the satellite surface.

_L_ is the instantaneous speed of the particle and ds/%r represents the

differential of time. (In the integrand of Eq. (24), z clearly denotes

the spatial coordinate z rather than _2 as in the previous sections.)

The integral in Eq. (24) may be written

oo

(25)

if by < i/_'> we mean an average value of i/_ over the trajectory.

We propose to approximate the integral of Eq. (25) by replacing < J/_r>

by b/_f, where "D" is the speed of the particle at s = 0, i.e., the

19

|



6enter of the probe grid (see Fig. i), and b is an average constant or

"fudge factor" which is difficult to evaluate. Since, on following the

particle backwards in time from the attracting probe, _0" generally

decreases with s, b is probably numerically greater than unity. If b

varies sufficiently slowly, this approximation should not be greatly in

error. The proposed approximation is equivalent to assuming that all

trajectories are straight lines or rays radiating from the center of

the probe to infinity. The approximation should become accurate when

the critical trajectories are nearly grazing ones.

Since the integral in Eq. (25) must be equal to the probe

potential, Vo, Eq. (25) may be approximated by

_g If

(26)

where b is a constant of the order of and greater than unity. The

velocities q0" and q-_ are the initial values at the probe center.

Thus, intersections will occur if

(27)

or, on squaring both sides and rearranging, if

b I V_ _
I

(28)

In Eq. (28), z denotes %rz 2 and x denotes _ , as defined in

Section II.
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Equation (28) will be used as an analytic boundary curve in

trajectory space. The theoretical allowed domain based on Eq. (28)

is plotted in Fig. II, assuming b = i and V = 45.54, for comparison
O

with the points obtained by numerical trajectory calculations. The

analytic intersection curve deviates considerably from the numerically

determined points for values of z _ z I = 11.385 = (45.54):/4. However,

the analytic and numerical curves intersect the line 45.54-z at very

nearly the same value of z. This point will be discussed further below.

Using Xm(Z) as given by Eq. (28) in Eq. (12c), and with z I given

by b2Vo/4, Eqs. (15)-(17) become:

gl " I (29)

g2 = (1 - b2/4)v° (30)

_ v' 1,,-v_,.%= e v°
Jvo _" s=td

= i..v _. (v,,)
(31)

where E 1 (_) denotes the exponential integral

_C (32)
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Thus, Eq. (14) gives the normalized current density as the sum of

Eqs. (29)-(31):

J
= % +Vo - Vo (33)

For small Vo, EI(Vo) increases like In (I/Vo) and Vo2El(Vo) is dominated

by Vo, so that

For large Vo, EI(V o) decreases like e-Vo/Vo, so that

J /
II + -- -- -- +"' (35)

Equation (33) is plotted in Figs. 8 and 9, for various values of b, for

comparison with the current obtained from the detailed numerical tra-

Jectory calculations. The agreement is excellent for b ffi1 to within

the accuracy of the numerical results. This may be connected with the

fact that the numerical and analytic curves intersect the llne 45.54 - z

in trajectory space at very nearly the same value of z (at z = Zl) , and

that the structures of the curves for smaller values of z are probably

unimportant since the integrand in Eq. (17) drops off very rapidly in
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the vicinity of z I. This situation might be expected to apply only to

large values of V . However, as Fig. 8 shows, it apparently applies
O

to small values of V as well.
o

Equation (35) shows that the slope of the current curve for

large V is rather sensitive to the value of b. According to the
O

arguments given above, b should be greater than unity. If it is only

as large as 2, however, J/Jo remains less than 2 for all values of Vo,

i.e., the one-dimensional limit is indicated. The theory is not

applicable for values of b greater than 2, since Eq. (33) leads to

negative values of J/Jo for large values of Vo.

The retarded current characteristic corresponding to the same

allowed domain is obtained from Eqs. (21)-(23) by using Xm(Z) as given

by Eq. (28) in Eq. (21), and with z I given by b2Vo/4. Thus, the three

possible cases may be expressed as:

j_ Vo _- _--_a_ +
J° = _ JV

= l÷%--Ve

where El( p) denotes the exponential integral, Eq. (32).

(b)b Vo/q Vo

(36)

°l

O_

(3 7)
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(c)

° /
0 _.-V

o w

J_
(38)

Equations (37) and (38) are identical to Eqs. (22) and (23) but are

repeated here for completeness. The normalized retarded current J'/Jo

is plotted in Fig. 6 for several values of b and V = 45.54. Equation
o

(36) reduces to Eq. (33) for the total current when V ffiO.

For large values of V Eq. (36) has the asymptotic form:o j

0/

J
I

4

(39)
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APPENDIX A - INTERSECTIONS IN THE CASE OF A SPHERE

The material derived in this appendix is relevant to the subject

of currect collection by spherical and cylindrical probes. The fact

that a current limitation may be caused by the form of the potential

distribution as well as the value of the probe potential has been con-

sidered by Hall 4, Bernstein and Rablnowitz 5, and Al'pert, Gurevlch and

Pitaevskii 6.

We assume that the potential distribution in the vicinity of a

sphere which is embedded in a plasma may be described by the form

__M (AI)

y.

where r is the radial distance from the center of the sphere and M and n

are positive. It will be shown in this appendix that a grazing trajectory

cannot exist at the surface of the sphere unless the exponent n is less

than 2. A trajectory which can connect energetically with infinity will

do so when n is less than 2, and may not connect with infinity (i.e., it

may intersect) when n is greater than 2. In the latter case, intersections

will limit the current which can be collected. An approximate expression

for the current will be derived, with the exponent n as a parameter.

The equations of motion for a particle having mass m and angular

momentum L, which is subjected to a potential energy function of the form

Eq. (AI), are given by:

vv% _n+l (A2)



(A3)

where the dots signify time-derlvatlves, r is the radial distance from
the center of force, and _ is the angle between the radius vector and

an arbitrary reference line which lies in the plane of the orbit and

passes through the center of force. With the use of the substitution

the differential equation for the orbit is:

<:I,.V"- 4-
(A4)

Let the radius of the sphere be ro, and consider a grazing

trajectory at the point P as in Fig. AI. Let the angle _ be measured

from the llne of symmetry 0-P in Fig. AI. Expanding r(t_) about

_2 = 0, we have, using Eq. (A4) and recalling that (dr/d_)o = 0:

+ ,, , (AS)
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where

r
o'

Thus, the radius of curvature of the trajectory is greater than

as shown by the trajectory marked (a) in Fig. AI, if

(A6)

and thus the trajectory does not intersect the sphere (at another point)

and may possibly connect with infinity, depending on its energy. This

inequality is automatically satisfie4 for a repulsive potential, since

M, and therefore Vo, would be negative° For an attractive potential

(VOW0) , the inequality Eq. (A6) may or may not be satisfied. If it

is not satisfied, i.e., if

then the trajectory, as exemplified by (b) in Fig. AI, passes through

the sphere. That is, the particle cannot have come from infinity,

regardless of its energy.

The additional requirement that the trajectory must connect

energetically with infinity may be expressed in terms of the local

kinetic energy K. Thus, since

(A8)
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and

the criterion for a non-intersecting grazing trajectory which connects

with infinity is obtained from Eq. (A6):

or,

(All)

If n is less than or equal to 2, Eq. (All) is automatically satis-

fied (no intersection) when Eq. (A9) is satisfied (energetic connection

with infinity). That is, Eq. (A9) is the appropriate criterion which

includes Eq. (All). Thus, the Langmuir formula for the current J/Jo "

i + V is obtained by integration over a Maxwellian distribution simply
o

by considering Eq. (Ag) for all trajectories, including grazing ones.

However, if n is greater than 2, Eq. (All) is the appropriate

criterion which includes Eq. (A9). Thus, an expression different from

the Langmuir result would be obtained by using the correct formula for

the boundary in trajectory space. This formula must reduce to Eq. (All)
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for grazing trajectories. In general, an exact analytic formula cannot

be obtained. The charge density is also difficult to calculate when

the potential falls off wlth r more rapidly than r -2. Thus, the solution

for the Polsson field in the vicinity of a sphere or cylinder embedded

in a plasma has remained an extremely difficult problem to date. 4,5

However, it is possible to derive an approximate expression for the

current when the exponent n is greater than 2. This may be of heuristic

value.

Consider a trajectory which is not quite grazing (at the point P

in Fig. A2), but is nearly so. In the vicinity of the point P, r(_ )

may be represented by the approximate expansion:

(9)= u_
(AI2)

where use has been made of Eq. (A4). It will be assumed that retaining

terms up to order _2 will give a sufficiently accurate representation

of r(_), for a nearly grazing trajectory, to allow a conclusion to be

drawn whether the trajectory intersects the sphere at another point

(Q in Fig. A2). For very small displacement angles _, the trajectory

should be very nearly symmetrical about the point where r has its maxl-

mum value rm. Differentiation of Eq. (AI2) yields the following ex-

pression for %' the angle corresponding to r :
m

(AI3)
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Denoting by _ the angle made with the vertical at P by the particle

velocity vector (see Fig. A2), we have the relation

= co+ e (AI4)

Moreover, using L 2 = 2mr 2Ksin2@ , Eq. (AI3) becomes:
O

I

° 7
1

and v are the components of the particle velocity at P,where v r z

perpendicular and parallel to the normal direction, respectively.

If the trajectory is not to intersect the sphere at any point

Q, the angle _m must be greater than some angle ¥. This means that

(AI5)

(AI6)

A simple formula results if y is allowed to go to infinity, namely:

The assumption of an infinite rather than a finite value for y is justified
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within the present approximation. A finite value would complicate the

algebra without introducing any qualitative changes in the conclusions.

In preparation for the use of Eq. (AI7) to calculate the current

for a Maxwellian distribution at infinity, let the velocities be ex-

pressed in units of (2kT/m)½ and the energies in units of kT. Then, in

accord with the notation of Section II and of Fig. 5, the allowed domain

of integration is given by:

on) x_,(_)= Vo-÷ ( _, <_ • ! v. ) (AlS)

(III)

where

(A21)

This domain in trajectory space is illustrated in Fig. A3.

The definition of the three regions in Eqs. (AI8)-(A20) and

Fig. A3 are in accord with Eqo (AI7), when n is greater than 2 but less

than 4. If n is greater than 4, the intercept on the z-axls by the

straight llne of Eq. (A20) lies at a value of z greater than Vo. This

contradicts Eq. (AIS), the Justification of which has been discussed in

Section II. However, the approximation above applies to nearly grazing

trajectories, i.e., where n is slightly greater than 2, and zI (Eq. (A21))

is nearly zero. Hence, for n>4, the domain is not correctly described
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since the trajectories corresponding to the boundazy of the domain,

in Regions II and III, are far from grazing ones. The assumption will

be made, therefore, that for n > 4, the allowed domain is given by:

(I) _(_) =O (_ >V, ) (A22)

The definition Eq. (A23) is illustrated by a dotted line in Fig. A3.

The "patched up" equations, Eqs. (A22) and (A23), may not be grossly in

error since Eq. (A23) gives the correct value (n/2)V o at the point z = O,

and the reasonable value, zero, at the point z = V O.

On the basis of the allowed domain In the trajectory space de-

fined by Eqs. (AI8)-(A21) for 2_ n _ 4, and by Eqs. (A22)-(A23) for

n > 4, Eq. (Ii) in Section II yields the following current density for

a Maxwellian distribution:

,, _j v_ -_- ( _Vo
+ V°e _

= I-- e
0.

(A24)
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(A25)

where Jo = no(kT/2_m)½ (Equation (tO) in Section II). The behavior

of the current density as a function of Vo, with the exponent n as a

parameter, is illustrated in Fig. A4. For V ° near zero, all of the

curves behave like I + V independent of no For n between 2 and 4,
O'

the asymptotic behavior of the current is linear, with slope (2-n/2)

varying between unity and zero as a function of n. For n greater than

4, an apparent "saturation" is manifested. However, this saturation

effect is quantitatively doubtful due to the approximations used, but

is perhaps qualitatively reasonable. It corresponds to the one-

dimensional limit where intersections are dominant. (See Reference 6,

p. 230. )

The retarded current characteristic corresponding to the same

allowed domain is obtained by suitably modifying the limits on the

integrals in Eqs. (A24) and (A25). If the potential barrier to be

overcome by the collected particles is V, we have the following cases:

(a)

j, lr( -,)Vo
--r -= e V°Jv e-_ - _ Vo a _

A26)



iov_'I _V °

j _ Vo| C

Jo Jv

(c) ,,'l __v_ _ H
l

_t V > vo

' S"jr
J= e % e -_
Oo V

(A27)

(A28)

-C-_-,) (v.- v)7
J -_ [ (A29)

V
o

j_ _ _% e.-_ j_ ,_ Vo-- M (A30)

The retarded current characteristic is plotted in Fig. A5, for

= 45.54, for values of n = 2, 2.5, 3, 3.5, 4, and 6.
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APPENDIX B - DRUYVESTEYN RELATIONS FOR ISOTROPIC DISTRIBUTIONS

When the Boltzmann distribution function or density in phase

space corresponds to an isotroplc velocity distribution at infinity,

the current density of particles incident at a point on the surface

of the probe may be expressed by:

where ?_ is the Boltzmann distribution function. In Eq. (BI), the

geometry is assumed symmetric about the normal direction, and %C_ and _%Fr

denote components of velocity parallel and perpendicular to

this direction, respectively. Let z and x denote _ and _J-r_ ,

respectively, for convenience.

Consider first the grid of the probe to be biased at a repulsive

potential so that the particles of interest must overcome a potential

energy barrier of height V in order to be collected from infinity.

Assume that the collecting electrode is biased so as to attract all

particles passing through the grid. Then

(B2)

where m is the particle mass, and energy conservation has been invoked.

Since the energy requirement is that x + z be positive or zero, the

entire x - z plane is energetically allowed. Assuming no exclusion

due to intersections, we may write:
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By transforming to new variables, z and u = x + z + (2/m)V, we have

where the last form was obtained by interchanging the order of integration.

Thus, By differentiating once with respect to V, we obtain

And by a second differentiation with respect to V, we obtain

(Bb)

(B6)

Equation (B6) may be considered as one form of the Druyvesteyn relation.

Let the speed distribution at infinity be denoted by _ (_'_) , such

that _(_y_ gives the number of particles per unit volume which

have speeds lying in the interval d%r_ . Then the relation between

_ and _ is

(B7)

92

so that Eq. (B6) can be put in the form:
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which is the formula given by Druyvesteyn 2. (See also Reference 3,

p. 753. )

Now consider the probe grid to be biased at an attractive

potential so that particles coming from infinity have at least a

kinetic energy V at the probe. As before, let the collecting
o

electrode he biased so as to attract all particles passing through

the grid. Then the current density is given by

- (B9)

2
- - Vo be positive or zero.The energy requirement is that x + z m

Hence, the energetically excluded domain of the x - z plane is the

triangle near the origin bounded by the lines x = 0, z = 0, and

x + z = (2/m)V o. Assuming no additional exclusion due to intersections,

we may write:

_ --_

- Vo}
(BI0)

Oo

1 o

By transforming to new variables, z and u = x + z - (2/m)Vo, we have

_JoF ,_:z I) 4- _ Iz- a_ (u)J=3 = (BII)

%,,,"z- _ v,
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or

j = C_ % _-- J (BI2)

where c and d are constant moments of the distribution function, namely:

(BI3)

(BI4)

The form of Eq. (BI4) may be obtained from the second term of Eq. (BII)

by reversing the order of integration. In the case of the Maxwellian

distribution, i.e., where 4_ is given by

____

C _-r (BlS)

the constants c and d become:

(BI6)

Thus, for the attracting probe the resulting linear relation Eq. (BI2)

bears no resemblance to the distribution function, and a Druyvesteyn

relation does not exist.
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Now let the collecting electrode be biased so as to repel

particles passing through the grid, and let the potential energy

difference between the grid and the collector be denoted by V. Then

the current equation Eq. (Bll) is modified as follows. When V is less

than V ,
O

_% o_ _

V

where c and d are defined by Eqs. (B13) and (B14). The lower limit on

the z-integration is raised from 0 to (2/m)V since only values of z

greater than or equal to (2/m)V at the probe grid can contribute to

the current collected. Again, due to the linear form of Eq. (B17)

there exists no Druyvesteyn relation for V _ %,/o,

However when V is greater than V the first term in Eq. (Bll)
' O*

makes no contribution at all, and the second term is modified to yield:

VM _-

)T&
=-_" (B18)

which follows upon reversing the order of Integration. Equation (BlS)

becomes identical to Eq. (B4) if V - V is replaced by V. Hence a
O

Druyvesteyn relation exists and the analysis following Eq. (B4) for the

case of a repelling probe may be carried through in an identical fashion.

Thus, defining _V_ V-_ , we have, according to Eqs. (B5), (B6), and

(_):



oo

-IF

_V

gav •
D-1I-

(BI9)

(B20)

(B21)

-Therefore, the case of the attracting probe wlth an internal repelling

collector is equivalent to the case of the repelling probe, since in

either case, a Druyvesteyn relation holds with respect to the net

repulsive potential barrier which the particles must overcome in coming

from infinity to the collector.

According to the discussion of Section II, exclusions in x - z

space due to intersections of trajectories with the satellite surface

are not likely to modify the boundary for z _ V . Thus, when V is
o

greater than Vo, Eqs. (BIS)-(B21) remain valid in the presence of inter-

section effects.



APPENDIX C - EFFECTS OF INTERSECTIONS

FOR GENERAL ISOTROPIC DISTRIBUTIONS

The equations in Appendix B have been derived on the assumption

that no part of trajectory space is excluded because of intersections.

They are applicable to any geometry, provided that it is rotatlonally

symmetric. Intersection effects, if present, will be manifested in

the current characteristic of an accelerating probe and will depend

on the geometry of the probe. In exploring the modifications in the

characteristic caused by intersections for arbitrary isotroplc dis-

tributions, we will first consider the case of a sphere, which has

already been treated in Appendix A for the case of a Maxwellian dis-

tribution. We will employ the exponent n of Appendix A as a parameter

to characterize the spherical potential distribution. Following this,

we will similarly consider the planar probe characteristics, which

have been treated in Section IV for a Maxwelllan distribution. We

will use the parameter b of Section IV to characterize the potentlal

distribution. For both the sphere and planar probe, the limits on

the integrals in Eqs. (BI0)-(BII) of Appendix B will be modified.
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__<n±q

SPHERE

Assuming that the exponent n, which characterizes the spheri-

cally symmetric potential distribution lies between 2 and 4, the

allowed domain of integration in trajectory space may be obtained

from Eqs. (AI8)-(A21) of Appendix A as follows:

(I) 9<,. = O 1

< _Em z. _ < _ _ ) (C2)

(C3)

where

z,--- (;-I

In Eqs. (CI)-(C4), x and z denote v 2 2
and v respectively, in

r z '

cylindrical velocity coordinates, V° is the potential energy of the

attracted particles at the sphere surface, and m is the particle
mass.

(C4)
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By reversing the order of integration in the first and last terms,

we may rewrite Eq. (C5) as follows:

J --B- ¢_'-T = --- f_ (_)u Ju
Oo ,,.,n.g jo

+
;J

(C6)

where z I = (n - 2)Vo/m , and where c and d are the moment integrals

defined by Eqs. (BI3) and (BI4) of Appendix B, respectively. When

the potential V is zero, j is equal to d, which may be also designated
o

as Jo" Thus, the normalized current ratio J/J0 may be obtained by

division by d. For the case of a Maxwellian distribution, i.e., where

_ (u) and d are given by Eqs. (BIS) and (BI6) of Appendix B,c_

we recover the ratio J/Jo as given by Eq. (A24) of Appendix A, namely:

(C7)
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Taking the derivative with respect to V
o

the general relation, Eq. (C6), we obtain:

of J/Jo as given by

(C8)

where zI = (n - 2)Vo/m.

By a second differentiation with respect to Vo, we obtain:

:2 >
(C9)

Thus, a Druyvesteyn relation exists for the accelerating spherical probe

due to the presence of intersections (n > 2). Since n is not known,

used for the determination of _ If _ isEq. (C9) cannot be

known, however, Eq. (C9) might be useful for determining n, i.e. , the

characteristic parameter for the field around the probe.

It is interesting to apply the foregoing equations to the case

of a monoenergetic distribution, for comparison with the Maxwellian.

Letting _ be given by the delta-function

(ClO)

61



where A is a constant, the normalized current ratio obtained from

Eq. (C6) may be written:

c=__ A

g=_uoA

,/0 _'/o

_+. (po

+ I (cii)

where zI = (n - 2)Vo/m. There are two rsnges to be considered,

according as zI is greater or less than _o" Thus, denoting by

the ratio 2Vo/_o , we obtain:

(a)_

(b)

J0

Jo

(c12)

(C13)
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In case (a) the first integral of Eq. (CII) vanishes, while in case (b)

the second integral vanishes. Both Eqs. (C12) and (C13) are linear,

but with different slopes. The discontinuity in slope occurs for

= n/(n - 2). Considering J/Jo_Q_ _ (_--i) , where J/Jo

as a function of _ _ _k/o/_o. , the slope is unity for

the lower range of t_j and between unity and zero for the upper

range of _ , depending on the value of n. The existence of a

discontinuity in the slope of the accelerating probe current charac-

teristic for a monoenergetic distribution has been suggested by

Medicus I0 on the basis of qualitative arguments regarding the sheath

thickness. (The variation of the parameter n here may be regarded

equivalently as a variation in sheath thickness.) This phenomenon

occurs only for a delta-function, in which case the second term in

Eq. (C8) becomes a step function. For a continuous distribution,

however, the derivative is continuous. It is evident, by comparison

of Eqs. (C7) and (C13), that the slope of the asymptotic straight

line approached for large values of V ° is the same for the Maxwellian

and monoenergetic distributions, when the characteristics are con-

sidered as functions of the appropriate dimensionless variables.
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PLANAR PROBE

In the case of the planar probe, the allowed domain of inte-

gration in trajectory space may be written, using the theory of

Sections II and IV, as follows:

m,1
(_, _ ¢ -_ Z¼) (ClS)

(o Z._< _,) (C16)

where

(C17)

In Eqs. (C14)-(C17), x and z denote v 2 and v 2 respectively, V is
r z ' o

the potential energy of the attracted particles at the probe grid,

and m is the particle mass.
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Then Eq. (BII) of Appendix B becomes:

4--

_v_, _--_v.

dl.f C") (Cl8)

where zI - b2V /2m.
o

By reversing the order of integration in the first and last

terms, we may write Eq. (C18) as follows:

=T / J.-JS C _
o

4-

Qo

(C19)
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Now Jo " J(Vo = 0). Hence, defining

O

(C20)

and

C

we may express the normalized current ratio as:

(C21)

;o

For the case of a Maxwellian distribution, where

= A _'_ _ _-w_ /hl) ' we have C --- -TFA _'_/_)
, and Eq. (C22) yields:

J, = _._ A k"-q-_-/, ,,','-

(C22)

(c23)
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in accord with Eq. (33) of Section IV. The constant A, which is

_o (_3 /_7Fk_-_ 3/_ , is immaterial since it appears in both

+numerator and denominator of the terms of Eq. (C22).

For the case of a monoenergetic distribution, where _oo (u) =

and Eq. (C22) yields

Jo I+9
(C24)

where _ denotes the ratio 2Vo/mU,.

It is interesting to note that the planar probe current char-

acteristic for the monoenergetic distribution given by Eq. (C24) is

continuous and has continuous derivatives, in contrast to the case of

the spherical probe (Eqs. (C12)-(C13)). Comparison of Eqs. (C23) and

(C24) shows that the asymptotic linear behavior is the same, when

J/Jo is considered as a function of the appropriate dimensionless

variable.

By taking derivatives of the general characteristic given by

Eq. (C22), one does not obtain a Druyvesteyn relation for the planar

probe as is found for the spherical probe. (See Eq. (C9).)

67



APPENDIX D - SPECIAL CASE OF A MOVING SPHERICAL PROBE

WITH SPHERICALLY SYMMETRIC POTENTIAL

Although it is not possible in general to express in analytic

form the current to a moving probe, an exceptional case occurs for a

spherical probe when the potential distribution about the probe is

spherically symmetric.

The case where the potential is spherically symmetric and the

velocity distribution is a Maxwellian with a superimposed drift velo-

city has been treated in recent years I0'II. Work has also been per-

formed on the problem of a cylindrical probe in the same velocity

distributlon 3'12. In these problems the concept of a sheath of

finite thickness was employed to characterize the potential distri-

bution function.

We have already treated the case of a spherical probe in a

Maxwelllan velocity distribution in Appendix A, and a general iso-

tropic distribution in Appendix C. In these Appendices we have intro-

duced a new model, namely, that of a power-law potential characterized

by an exponent n, which was employed to take into account trajectory

exclusions due to intersections. In this Appendix we will extend the

theory of Appendices A and C to the case where the particle velocity

distribution in the plasma is any rotationally symmetric function, the

most important example being an isotroplc function with a superimposed

drift velocity. The method, however, can be applied to any velocity

distribution whatsoever. The potential distribution function will be

assumed to have a fixed spherically sy_netric form, despite the presence

of a distribution of space charge which is not spherically sy_netrlc.

When the plasma is extremely rarefied, space charge effects should pro-

duce a negligible distortion of the potential from spherical symmetry.

At the same time, the deviation of the potential from the Laplace

(Coulomb) form should also be small. When the plasma is not rarefied,

the deviation from spherical symnetry due to the presence of space

charge would be small if the drift velocity is small. For sufficiently
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small drift velocities, then, or for sufficiently rarefied plasmas,

the spherically symmetric approximation may be s good one and may

yfeld fruitful results 3'I0'II We will therefore proceed under the

assumption of spherical symmetry, to examine the effects of the form

of the distribution function, and of trajectory exclusions due to

intersections, on the current characteristics of the spherical probe.

Although it is simpler to use directly the angular momentum

or impact parameter approach 10'II to derive the integral for the probe

current, we will employ the equivalent approach of performing an

integration of the local current density over the surface of the sphere.

That is, we will preserve the formulation of this report,ln which the

current density is obtained by an integration over the local velocity

space at a point on the surface of the sphere• This formulation may

have value in permitting one to examine the collection of current in

the neighborhood of such a point. However, for the purpose of this

report, we will not consider individual points, but will take full

advantage of syrmnetry in performing the surface integral. The velocity

dlstribution at infinity will be assumed to have rotational symmetry

about an axis, but it will be clear from the results that the formula

for the current will be applicable to any velocity distribution whatever,

provided that the appropriate _ distribution is used. A Druyvesteyn

relation holds, for the retarding sphere, between the second derivative

of the potential and the speed distribution.

The integral to be derived for the current to the accelerating

sphere will be shown to have a general form which may be applied to any

mathematical model describing the effects of trajectory exclusions. Thus,

it is of interest to obtain an expression for the current based on the

power-law potential model of Appendix A, and to compare this with the

current based on the sheath model 3'I0'II. For a Maxwelllan velocity

distribution with superimposed drift, it will be shown that the two

models have similar properties, so that they are in a sense equivalent.

The current collected by a sphere may be written in the form
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where lx_ is the element of surface of the sphere, n is a unit vector

in the direction of the outward normal at the surface element, and

is the distribution function, i.e., the density in phase space. The

outward normal direction is considered positive for convenience. Since

the trajectories are to be followed backwards in time to their origin, it

is convenient to consider only outgoing velocity vectors and to reverse

the velocities at infinity for the evaluation of the distribution function.

For a rotationally sy_netric velocity distribution with an axis

of sy_netry along the direction of a unit vector _ , the distribution

function for occupied trajectories (see Section II for the definition

of the term "occupied") may be written:

where _ is the angle made by the particle velocity vector ( _r_ ) with

the direction of "1._5 at infinity. The quantity "lJ'_ is the speed at

infinity, which is reIated to the locaI speed ('W) by

ar 4- (D3)

where _ is the local potential energy of the particle and _ is its

mass. For example, an isotropic velocity distribution with a super-

imposed drift velocity If5 may be represented by the function

i.e. by a function of the single

argument _.____ )t

The following coordinate system will be adopted; as illustrated

in Fig. DI. The point at which the current density is to be evaluated

is the point P, located on a sphere of radius to, at a polar angle

with respect to the principal axis, %f5 " The outward normal unit vector

at this point is n. The primed velocity coordinates %r_, _' , _-_

refer to a coordinate system fixed in space, with the _J'_S-axis along

the direction of _ , and the _/_-axis perpendicular to this

axis and lying in the plane containing the vectors _ and n. The
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Ab"_e-axis is perpendicular to this plane. The unprimedvelocity coordl-

nares V_, _;_,_e refer to acoordlnate system which rotates with the

n, the_-axis isvector n, where the -O'_-axls is along the direction of _

perpendicular to this axis (tangent to the sphere at P) and lying in

the _ - plane, and the %95-axis is parallel to the v_-axis. Thus,

the unprimed coordinate system may be obtained from the primed coordi-

nate system by a rotation about the _-axis through an angle _ .

Let-'_ be the local velocity vector at the point P. It is

convenient to introduce spherical polar velocity coordinates, i.e.

%9/ OJ _/ and _/_ for the primed and unprimed systems, respec-

tively. Here, _' is the polar angle made by the velocity vector

%)" with the _f_-axls, and _' is the azimuthal angle made by the
A

_-_ plane with the _ -_ plane. The angle _ is the polar angle

made by--_with the _-axis, and _ is the azimuthal angle made by the

_- _ plane with the _ -_ plane. The angle _is equal to 0

(or "7]-) when_ is in the _ -_ plane and headed away from (or toward)

the positive % -axis.

The trajectory passing through the point P is associated with
--e

a particle having the velocity vector _ at infinity. In the primed

coordinate system, the vectorqS_makes a polar angle eJ with the

q-axis and _/is the azimuthal angle, which is equal to _/for a

spherically sy_mnetrlc potential. In the unprlmed coordinate system,

the vector 'If_ makes a polar angle_ with the _-axis, and _ is

the azimuthal angle, which is equal to _ for a spherically symmetric

potential. The angles 8 , _, and _J are shown in Fig. DI.

Thus, we have the following relations between the angles in

the two coordinate systems:

_,_o_cos_ _ = co_ _ _f_ co_ + _l_ _ose (D4)

(Db)
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(D6)

Since the angle _ which enters into Eq. (D2) is the supplement

of _ , we obtain from Eq. (D6) the relation

(D7)

In Eq. (D7), _ may be defined as the change in polar angle of the par-

ticle in going from the point P to infinity. It is a function of _ and

"_, but not of _, and may be expressed by the following formula when

the potential is proportional to r-n:

Jo
J d't (D8)

In terms of the angles defined above, the five-dimensional in-

tegral for the current, Eq. (DI) may be written as

The lower limit on the'V-integral depends on the sign of _)o and will be

discussed Iater.

In Eq. (D9), G is defined by
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(DI0)

whereto is the potential energy of the particle at the sphere surface,

and the function_ has been defined as in Eq. (D2). In deriving Eq.

(D9), use has been made of the symmetry about the direction of _ in

the surface integration. The upper limit _m_yon the _-integral de-

pends on intersection effects, which will be discussed later.

It is now convenient to transform the integration over _ to an

integration over co_ , where _ is defined by Eq. (D7) as the

second argument in the distribution function _ . From Eq. (D7) we

find _o$_ as a function of ==5_ :

(Dll)

T5



Note that there are two branches in the transformation, given by the two

signs. The Jacobian of the transformation is

(DI2)

where

cos _i_
(DI3)

(DI4)

Thus, we may write the function G as

_0
JO

(DIS)
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where the range of the _-integration will now be discussed,

Considering _ , and therefore _, fixed, the range of _ is

taken from 0 to 21- provided that the radicand of Eqs. (DII) or (DI4)

does not vanish for any value of _ in this range. In this case, the

integration over T2 gives zero, and the integration over TI gives

simply 2"_ , independent of O_ • Either branch of the transformation

may be chosen, and no transfer occurs from one branch to the other.

However, if the radicand vanishes for a value of _, designated by

_ , then the range of _ is restricted in such a way that the radi-

cand remains positive. The argument is too lengthy to be given here,

but it may be shown that a transfer occurs from one branch to the

other as _ passes through the value _M " In this case, the integration

over T2 gives 2_ , while the integration over TI gives zero.

Thus, ignoring the sign of the Jacobian, the function G becomes:

-n-

• O0

_O

and the current becomes, using Eq. (D9):

(DIT)
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With the use of Eq. (D3), the v-differential may be transformed by

(DI8)

into the differential of the speed at infinity. The resulting current

may be written:

qY

(DI9)

where N(_/w) is the speed distribution defined by:

(n2o)

The differential N(_) _,, represents the number of particles per unit

volume at infinity which have speeds lying in the range _ to %r+ _%F .

The symbol N appears here in a manner identical to that in which the

symbol _ appears in Appendix B. (See Eq. (BT) in Appendix B.) In

Appendix B, _ denotes the speed distribution in an isotropic velocity

distribution. The symbol N will be associated with a more general

velocity distribution.
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In Eq. (DI9), _ is given by zero or (2_o/m) ½, according as

_ois negative or positive, respectively.

If _= V, where V is positive, the probe is retarding and there

are no trajectory exclusions due to intersections. (See Section II for

definitions of terms.) Therefore, eg_; has the constant value -R'/2,

and a Druyvesteyn relation follows from Eq. (DI9). With'L_,_ = (2V/m) ½,

the second derivative of I with respect to V is given by

Jv
where N is defined by Eq. (D20). (Compare Eq. (D21) with Eq. (B8) in

Appendix B.)

If -_Q- Vo, where V o is positive, the probe is accelerating

and there may be trajectory exclusions manifested in O_ . That is,

_m_ may depend on V o. However, in the absence of trajectory exclu-

sions, _ is equal to_/2. In Appendix A it is shown that for a power-

law potential falling off as r -n, trajectory exclusions do not occur

if n is less than 2. In this case, with_:_ _ O, the current is a

linearly increasing function of V . According to Eq. (DI9), this
O

function may be expressed as:

where N('V) is defined by Eq. (D20) and I is the value of I when V = O.
O O

From tldspolnt on, the symbol_r will be used to denote %Y_ , since we

will no longer refer to local velocities.

In the presence of trajectory exclusions due to intersections,

_m_ depends on%Y and V o. If we assume a power-law potential falling
-U

off as r and use the results of the approximate theory in Appendix A,
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we obtain the following expression for_ :

(?_-I_ p_,_-._-W_.l _del) (D23)

for %r<Ry I , where _ is a critical velocity, defined by

(D24)

For _-_>Vl , s_8_z_= i. Equations (D23) and (D24) may be derived

from Eqs. (AIS) through (A21) of Appendix A, assuming that n has

values lying between 2 and 4. Thus, the current may be written:

ao

(D25)
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The derivative of I with respect to V becomes:

o

(D26)

As V becomes large, the slope becomes a positive constant pro-
o

portional to (2 - n/2). (Compare with Eq. (C8) in Appendix C.) Thus,

a saturation effect does not occur unless n exceeds 4.

The second derivative of I is given by

(D27)

which is equivalent to Eq. (C9) in Appendix C.

Thus, the current and its derivatives are given by precisely the

same formulae as those given in Appendix C for the isotropic distribu-

tion, provided that the speed distribution is used in the formulae.

This fact is due to the spherical symmetry of the probe potential. It

may be shown that the theory applies to any speed distribution what-

ever, which is obtained from any velocity distribution by integration

over all solid angles. The plausibility of this assertion may be seen

as follows.
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Equation (DI9) may be derived alternatively by using the

impact parameter picture, in which one considers the distribution of

velocities at infinity to be composed of a number of beams of particles

moving in parallel lines with equal velocities, as suggested in Reference

3 (p. 751). From the point of view of the particles in any of these

beams, the potential distribution appears the same, due to its asst=ned

spherical symmetry. Hence, the current entering the sphere depends

only on the distribution of speeds of the particles, and one would ob-

tain the correct answer by considering all the particles to be moving

in a single parallel beam, but with the appropriate speed distribution

function. Thus, a Maxwellian velocity distribution with superimposed

drift has a speed distribution of the form

i

I-

(D28)

where the velocities are in units of (2kT/m)½, %Fs is the drift velocity

Mach number, and the density is in units of no, the ambient particle

density.

The current-voltage characteristics of a moving sphere have been

calculated by Medicus I0 and Kanal II, using the speed distribution Eq.

(_28). Their calculations take the form of the potential into account

by using the model of a sheath of definite thickness. The sheath thick-

ness is the parameter which characterizes the form of the potential.

According to the sheath model, _i_ and_ are defined by the following

expressions:
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_s _- _IY _-
(D29)

(D30)

where r is the sheath radius. Equations (D29) and (D30) may be compared
s

with Eqs. (D23) and (D24) based on the power-law potential model with

n greater than 2.
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COMPARISON OF MODELS

It will be of interest to compare the accelerating probe current-

voltage characteristics derived on the basis of the power-law potential

model with those derived on the basis of the sheath model, when N(-V) is

given by Eq. (D28), corresponding to the physically interesting case of

a Maxwellian with superimposed drift. In the power-law model the

exponent n will be assumed to lle between 2 and 4.

For the power-law model, we will use Eqs. (D23) and (D24) in

Eq. (DI9). For the sheath model we will use Eqs. (D29) and (D30) in

Eq. (DI9). The current will be denoted by IpL for the power-law model

and by ISH for the sheath model, andL will be in units of 4-n'ro2no(kT/2-_m) ½.

With velocities in units of (2kT/m) e and potential energy in units of

kT, the currents for both models may be expressed in the forms

(D31)

(D32)

where

(D33)

and F(_) is the function
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(D34)

The arguments_f_Land _f are defined by

and

(D35)

(D36)

where

0/°-__I (D3F)

The coefficients ¢K and _ for the two models are defined by
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(D38)

_= I/_ _- (D39)

When V ° = 0, both IpL and ISH become equal to Io, defined by Eq. (D33).

For small values of lY_, F(qy) approaches

(D40)

For small values of nY, F(%r) approaches

F (_) -_ - ii-o + e- 4-,,, (D41)
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DIFFERENCES BETWEEN THE MODELS

For _= 0, IpL and ISH reduce to

(D42)

=O

I+ _ r - _V_

Comparison of Eqs. (D42) and (D43) shows clearly that the sheath model

current has a limiting ("saturation") current at large V , while the
O

power-law model current does not, for n less than 4. This is the most

important difference between the sheath and power-law models. When

'_ _ 0, and for large values of Vo, F(,_) approaches zero like -e -_

in both models, and IpL and ISH become:

(D43)

(D44)

___,_ _ _/+'7 "_ (D45)

That is, the saturation effect is exhibited by ISH , but not by Ip_ when

n is less than 4.
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For small values of _ , F(aY) is given by Eq. (D40), I

._o_ _+_/_, _._/_ )_ _-_ _o_o_ _- _/_,
and IpL and ISH approach:

(D46)

(D47)

Hence, the forms of IpL and ISH differ in that IpL has an additional

linear term. Thus, for large values of V , and small values of _ ,
o

IpL and ISH approach

3

_Vo >>(

(D48)

-,---=_t-___
\

)

(D49)



SIMILARITIES BETWEEN THE MODELS

For small values of _, F(%r) is given by Eq. (D41). Thus, for

small values of Vo, IpL and ISH become equal and are given by

where I is defined by Eq. (D33). J
O

= and IpL is given byFor n 2, F(IfrL) becomes equal to -I o,

Eq. (D50). For _---_0, which corresponds to an infinitely thick

sheath,

21k
(Dbl)

Hence, from Eq. (D32) we obtain for ISH the expression given in Eq.

(D50). Thus, for n = 2 (or less) we obtain the same current, based

on the power-law model, as we obtain for the sheath model with

_ = 0. That is, the two models become equivalent in this limit.

In other words, the infinite sheath case corresponds to the case of

no trajectory exclusions due to intersections, which we have shown,
-n

in Appendix A, to be valid when the potential falls off like r and

n is less than 2.

Moreover, IpL for n= 4 becomes identical to ISH for _= I.

For these values,

(D52)

and the currents become
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(D53)

as well asThus, in this ease, IpL shows saturation for large V ° ISH .

Now Eq. (D31) for IpL is invalid for n> 4, but, according to the

discussion of Appendix A the current IpL probably will saturate at

large V ° when n exceeds 4. Hence, for n greater than 4, the two

models are probably equivalent also. In the limit of infinite n,

IpL should become equal to Io, as does ISH in the limit of infinite

,_" (thin sheath limit),

Finally, the sheath thickness should be an increasing function

of V 5
o Therefore, the "saturation" effect exhibited by ISH at large

V i.e. Eq. (D45), is only an apparent effect. Therefore, for largeo'

sheath thicknesses, i.e. where 9/ is less than unity, the power-

law model (n < 4) probably affords a better description of the

current characteristics• Whereas, for small sheath thicknesses,

where _/ is greater than unity, the sheath model may have greater

validity.

The current IpL is plotted for vs = 0, I, and 2 in Figs.

D2, D3 and I>4, respectively. In each figure, curves are plotted

for n = 2, 3 and 4.
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